
MYSQL DATABASE STRUCTURE + QUERIES

Lecture / Instructor: Leigh Cotnoir

username l_name f_name address1 address2 city state zip email type donation

goatboy doe john 22 Tree St. Apt. B Chula Vista CA 91913 gboy@hotmail.com platimum 300

darth stewart ron 9 Cate Pl. null San Diego CA 92182 bigfan@gmail.com gold 100

smokey doe jane 557 1st St. Unit 245 La Mesa CA 91941 bandit@yahoo.com student 25

Database Basics
To start, this is an example of a basic table holding data through the use of rows and columns.
In terms of database terminology, the following apply:

‣ Each horizontal row represents a “record.”

‣ Each vertical column represents a “column” (also referred to as a “field”).

‣ Each data cell is a field cross-reference of a specific column value in a specific record.

‣ Each record has a “primary key,” or a unique id that no other record has.

mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:bigfan@gmail.com
mailto:bigfan@gmail.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com

username l_name f_name address1 address2 city state zip email type donation

goatboy doe john 22 Tree St. Apt. B Chula Vista CA 91913 gboy@hotmail.com platimum 300

darth stewart ron 9 Cate Pl. null San Diego CA 92182 bigfan@gmail.com gold 100

smokey doe jane 557 1st St. Unit 245 La Mesa CA 91941 bandit@yahoo.com student 25

Database Basics
To start, this is an example of a basic table holding data through the use of rows and columns.
In terms of database terminology, the following apply:

‣ Each horizontal row represents a “record.”

‣ Each column represents a “column” (yes, it’s still referred to as a column).

‣ Each data cell is a “field,” which is a cross-reference of a specific column value in a specific record.

‣ Each record has a “primary key,” or a unique id that no other record has.

mailto:gboy@hotmail.com
mailto:gboy@hotmail.com

username l_name f_name address1 address2 city state zip email type donation

goatboy doe john 22 Tree St. Apt. B Chula Vista CA 91913 gboy@hotmail.com platimum 300

darth stewart ron 9 Cate Pl. null San Diego CA 92182 bigfan@gmail.com gold 100

smokey doe jane 557 1st St. Unit 245 La Mesa CA 91941 bandit@yahoo.com student 25

Database Basics
To start, this is an example of a basic table holding data through the use of rows and columns.
In terms of database terminology, the following apply:

‣ Each row represents a “record.”

‣ Each vertical column represents a “column” (also referred to as a “field”).

‣ Each data cell is a “field,” which is a cross-reference of a specific column value in a specific record.

‣ Each record has a “primary key,” or a unique id that no other record has.

“city” is the name of the column

username l_name f_name address1 address2 city state zip email type donation

goatboy doe john 22 Tree St. Apt. B
Chula
Vista CA 91913 gboy@hotmail.com platimum 300

darth stewart ron 9 Cate Pl. null San Diego CA 92182 bigfan@gmail.com gold 100

smokey doe jane 557 1st St. Unit 245 La Mesa CA 91941 bandit@yahoo.com student 25

Database Basics
To start, this is an example of a basic table holding data through the use of rows and columns.
In terms of database terminology, the following apply:

‣ Each row represents a “record.”

‣ Each column represents a “column” (yes, it’s still referred to as a column).

‣ Each data cell is a field cross-reference of a specific column value in a specific record.

‣ Each record has a “primary key,” or a unique id that no other record has.

goatboy’s city = Chula Vista

username l_name f_name address1 address2 city state zip email type donation

goatboy doe john 22 Tree St. Apt. B Chula Vista CA 91913 gboy@hotmail.com platimum 300

darth stewart ron 9 Cate Pl. null San Diego CA 92182 bigfan@gmail.com gold 100

smokey doe jane 557 1st St. Unit 245 La Mesa CA 91941 bandit@yahoo.com student 25

Database Basics
To start, this is an example of a basic table holding data through the use of rows and columns.
In terms of database terminology, the following apply:

‣ Each row represents a “record.”

‣ Each column represents a “column” (yes, it’s still referred to as a column).

‣ Each data cell is a “field,” which is a cross-reference of a specific column value in a specific record.

‣ Each record has a “primary key,” or a unique id that no other record has.

NOTE: the primary key is what we use to identify the record (row).

mailto:gboy@hotmail.com
mailto:gboy@hotmail.com

username, l_name, f_name, address1, address2, city, state, zip, email, type, donation

goatboy, doe, john, 22 Tree St., Apt. B, Chula Vista, CA, 91913, gboy@hotmail.com, platimum, 300

darth, stewart, ron, 9 Cate Pl., null, San Diego, CA, 92182, bigfan@gmail.com, gold, 100

smokey, doe, jane, 557 1st St., Unit 245, La Mesa, CA, 91941, bandit@yahoo.com, student, 25

Database Basics
The example below can be considered a “flat-file” database. Here is what makes it so:

‣ It is in a single table, with each field separated by a delimiter (commas, tabs, etc.)

‣ It is not properly “normalized,” meaning that all the data is stored in this one table, and that
much of the data could be considered redundant. For instance, if we had a lot of records but only
4 levels of donor support (“type”), we would inevitably repeat the 4 types AND the “donation”
amounts many, many times. To be more succinct, we could separate this one table into many
tables. (next slide)

mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:bigfan@gmail.com
mailto:bigfan@gmail.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com

Database Basics :: Normalization
Normalization is where we try to remove redundancies from the table(s) where possible. This
improves speed, efficiency, and data integrity. There are 3 basic “Normal Forms.” You must complete
these steps in order to correct normalization.

‣ First Normal Form (1NF)

✓ ensure the removal of all redundancies in horizontal rows.
✓ ensure that columns hold the least amount of data possible

‣ Second Normal Form (2NF)

✓ removal of redundancies in vertical columns. This means that you must identify columns that
repeat their values across multiple rows. If there are too many repeating column values, the
column(s) would need to be placed in a separate table(s) and referenced by a key in the
original table.

‣ Third Normal Form (3NF) -- typically for transactional tables only...

✓ Advanced. This often uses “foreign keys” and InnoDB table types. A foreign key is where a
column in a table is a dependent “child” of a parent key in another table. We won’t be using
this true foreign keys in the course, but we will use the concept of foreign keys.

username l_name f_name address email type donation

goatboy doe john 22 Tree St., Apt. B, Chula Vista, CA, 91913 gboy@hotmail.com platimum 300

darth stewart ron 9 Cate Pl., San Diego, CA, 92182 bigfan@gmail.com gold 100

smokey doe jane 557 1st St., Unit 245, La Mesa, CA 91941 bandit@yahoo.com student 25

Database Basics :: Normalization : 1NF
Because the previous table example was already normalized down to a 1NF level, let’s back it up to
see where it might have started without ANY normalization (see below).

‣ This table fails the 1NF level because is violates the rule that columns must have as little
information as possible. Look at how the address column values contain multiple discreet
components that are ganged together as one value.

mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:bigfan@gmail.com
mailto:bigfan@gmail.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com

username l_name f_name address1 address2 city state zip email type donation

goatboy doe john 22 Tree St. Apt. B Chula Vista CA 91913 gboy@hotmail.com platimum 300

darth stewart ron 9 Cate Pl. null San Diego CA 92182 bigfan@gmail.com gold 100

smokey doe jane 557 1st St. Unit 245 La Mesa CA 91941 bandit@yahoo.com student 25

Database Basics :: Normalization : 1NF
Because we created separate columns for discreet pieces of data that were previously in the old
“address” field, we now reach 1NF. Notice in this table we have:

‣ The least amount of data possible in each column value

‣ No redundancies across the horizontal rows/records.

….Okay, so let’s go to the next slide to check for 2NF.

mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:bigfan@gmail.com
mailto:bigfan@gmail.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com

username l_name f_name address1 address2 city state zip email type donation

goatboy doe john 22 Tree St. Apt. B Chula Vista CA 91913 gboy@hotmail.com platimum 300

darth stewart ron 9 Cate Pl. null San Diego CA 92182 bigfan@gmail.com gold 100

smokey doe jane 557 1st St. Unit 245 La Mesa CA 91941 bandit@yahoo.com student 25

Database Basics :: Normalization : 2NF
Let’s say that in our logic model, each member would have 4 different levels of membership to choose from, and each
level has a minimum financial contribution requirement. Well, if we expect to have even 5 member records, we would
have a repetition of values in both the “type” AND “donation” columns. This table fails the 2NF level as a result. The
“state” column suffers the same fate, too, which we will address as well. To fix it, we’d need to do the following:

‣ Put the “type” and “donation” columns into one new table. Leave a “type” column in this member table to
reference the new table we are making. Let’s see how that looks in the next slide….

‣ Also, because the “state” column could have a finite set of values (50 states), any of which could be repeated
multiple times across the rows, it can be placed in its own table.

mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:bigfan@gmail.com
mailto:bigfan@gmail.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com

level members

Database Basics :: Normalization : 2NF

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25state

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

Advantages of normalizing to 2NF are:

1. greater search abilities

2. mapping more sophisticated associations

3. better data integrity

level members

Database Basics :: Normalization : 2NF

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25state

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

One of the disadvantages of a flat-file is that it is much
more difficult and time consuming to perform honed
searches. By isolating data into logically grouped sets, we
can also make more succinct associations, or “relations”
with our relational database.

level members

Database Basics :: Normalization : 2NF

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25state

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

Furthermore, by providing tables with column values that
have a finite and specific set of possibilities (as in the
“state” and “level” tables), you are building discreet,
predefined array units that you can use to populate drop-
down menus and option lists so that you control the data
that users can enter into certain form fields. This helps
prevent data degradation via typos in certain form fields....

level members

Database Basics :: Normalization : 2NF

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

level members

Database Basics :: Normalization : 2NF

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com

1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

The option select list
is being pulled from
the “state” table so
that users must
select from a list of
states for form input.
This helps keep data
consistent.

level members

Database Basics :: Normalization : 2NF

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com

1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

The radio button set
of options is being
pulled from the
“level” table. Values
are pulled out as
array items and listed
through a looping
cycle.

level members

Database Basics :: Normalization : 2NF

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

Okay, so you might we wondering, “how do we get this
data out of the database and onto the webpage?”

We have to run “queries” against the database. Queries are
simply commands that manipulate the data in one way or
another. The most common query you are likely to run is
one using the “SELECT” command. Let’s take a look. . . .

level members

Database Basics :: Normalization : 2NF

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

Before doing anything else, you must connect to the
MySQL server via php and select the database you want to
work with. We won’t cover that here right now, though.
Instead, we will just look at straight MySQL syntax for
accessing data.

Database Basics :: Normalization : 2NF

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com

1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

Let’s start by grabbing all the column values for every record in the “members” table. You would use this
query:

SELECT * FROM members;

The asterisk in the statement is the “wildcard” symbol, meaning “everything.” So, in effect, we are saying:

“Select all columns from the members table.” Above is what the query will return.

Database Basics :: Normalization : 2NF / SELECT

Database Basics :: Normalization : 2NF / SELECT

username l_name f_name

goatboy doe john

darth stewart ron

smokey doe jane

Now let’s select specific columns:

SELECT username, l_name, f_name FROM members;

This is a more efficient way to query the database if all you really need are these columns. It keeps the server
from having to do extensive searches for a bunch of data you don’t really care about at that time anyway.

Database Basics :: Normalization : 2NF / WHERE

username l_name f_name city

smokey doe jane La Mesa

Now let’s select specific columns that match certain criteria using WHERE:

SELECT username, l_name, f_name, city FROM members WHERE username=‘smokey’;

A query like this might be run when a user clicks on a link from a list of user names to get more info
about the user.

Database Basics :: Normalization : 2NF / LIKE

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com

1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

Let’s go back to the full members table so we can see all the records:

SELECT * FROM members;

Now let’s do a search matching values to limited criteria with some unknown values, using LIKE:

SELECT * FROM members WHERE l_name LIKE ‘d%’;

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com

1

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:bigfan@gmail.com
mailto:bigfan@gmail.com
mailto:bigfan@gmail.com
mailto:bigfan@gmail.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com
mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com

Database Basics :: Normalization : 2NF / LIKE …%

The MySQL ‘LIKE’ operator is useful in doing searches where you only know part of what you are looking
for. As you saw in the previous slide, the % sign represents the unknown part of the pattern. Look at the
examples below of ways we can use this operator to find information:

LIKE uses % to indicate missing pattern (not case-sensitive)

• '%.gif ' would search for patterns ending in".gif"

• 'n%' would search for anything starting with the letter "n"

• '%tra%' searches for anything with the pattern "tra" inside if it at any position. It could return "tramp,"
"Sinatra," "intravenous" etc. if those words were in the search columns.

Database Basics :: Normalization : 2NF / ORDER BY … LIMIT

We can also use an ORDER BY command to filter query results in ascending or descending order.
Furthermore, we can LIMIT the number of records that are returned in the query. Let’s look at the
example below:

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

Reminder: full ‘state’ table: SELECT long_form
FROM state
ORDER BY long_form DESC
LIMIT 7;

Notice that the statement above
is separated out on different lines.
Like in HTML, MySQL statements
can be separated out on different
lines before the statement is
complete without throwing an
error. It knows when to end the
statement when it sees the
semicolon terminator at the end.

long_form

alabama

alaska

arizona

arkansas

california

utah

long_form

wyoming

wisonsin

west virginia

washington

virginia

vermont

Database Basics :: Normalization : 2NF / INSERT INTO

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.com 2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.com 4

Let’s go back to the full members table so we can see all the records:

SELECT * FROM members;

Now let’s insert a record. Look at the syntax below along with the results, and we’ll discuss it in the next slide:

INSERT INTO members VALUES ('lcotnoir','cotnoir','leigh','555 Pacific Ocean','#2','San
Diego','5','92182','lcotnoir@mail.sdsu.edu','1');

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.com 2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.com 4

lcotnoir cotnoir leigh 555 Pacific Ocean #2 San Diego 5 92182 lcotnoir@mail.sdsu.edu 1

mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:bigfan@gmail.com
mailto:bigfan@gmail.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com
mailto:lcotnoir@mail.sdsu.edu
mailto:lcotnoir@mail.sdsu.edu
mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:bigfan@gmail.com
mailto:bigfan@gmail.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com
mailto:lcotnoir@mail.sdsu.edu
mailto:lcotnoir@mail.sdsu.edu

Database Basics :: Normalization : 2NF / INSERT INTO

INSERT INTO members VALUES ('lcotnoir','cotnoir','leigh','555 Pacific Ocean','#2','San
Diego','5','92182','lcotnoir@mail.sdsu.edu','1');

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.com 2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.com 4

lcotnoir cotnoir leigh 555 Pacific
Ocean

#2 San Diego 5 92182 lcotnoir@mail.sdsu.edu 1

This command inserts NEW column values into a NEW row(s). An example of when you would use
this type of query is when someone fills out a web form, whose data you want to store in a database.
This could be anything: setting up a user account, buying goods, etc.

It is important that you have a place in the syntax for each field/column, or else the values will be
inserted into the wrong columns. The order of the values (see below) is identical to the way that the
table's columns are ordered.

You do NOT use this command to merely update an existing row. For that, use UPDATE.

mailto:lcotnoir@mail.sdsu.edu
mailto:lcotnoir@mail.sdsu.edu
mailto:gboy@hotmail.com
mailto:gboy@hotmail.com
mailto:bigfan@gmail.com
mailto:bigfan@gmail.com
mailto:bandit@yahoo.com
mailto:bandit@yahoo.com
mailto:lcotnoir@mail.sdsu.edu
mailto:lcotnoir@mail.sdsu.edu

Database Basics :: Normalization : 2NF / UPDATE, DELETE

Some other important commands are UPDATE and the DELETE statements. The UPDATE command
changes values in already-existing records, and the delete command will delete already-existing records.
Let’s look at some syntax examples:

UPDATE Syntax:

UPDATE table_name SET column_name = ’some_value’ WHERE some_column = ’some_value’;

multiples values at once:

UPDATE table_name SET columnA = ‘some_value’, columnB = ‘some_value’ WHERE some_column
= ’some_value’;

DELETE Syntax:

DELETE FROM table_name WHERE some_column = 'some_value';

level members

Database Intermediate :: Normalization : 2NF / JOIN

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

Let’s go back to our original set of 2NF tables. If we want
to be able to access all the values in the “state” table while
we are also accessing the values in the “members” table,
we can do this by using a JOIN in our query. What the
JOIN command does is temporarily join multiple tables’
columns into one merged table for the life of the query.
This join is not permanent, so you have to run the join
query each time you want merged results. (next slide)

level members

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

Let’s get values from all three tables above.

SELECT members.l_name, members.f_name,
members.city, members.zip, state.state, level.type,
level.donation
FROM members, state, level
WHERE (members.state = state.id) AND (members.type =
level.id);

Database Intermediate :: Normalization : 2NF / JOIN

l_name f_name city state type donation

doe john Chula Vista CA platinum 300

stewart ron San Diego CA gold 200

doe jane La Mesa CA student 25

SELECT members.l_name, members.f_name,
members.city, members.zip, state.state,
level.type, level.donation
FROM members, state, level
WHERE (members.state = state.id)
AND (members.type = level.id);

Notice that the new merged table generated by
the query does not display those representative
numerically keyed values in the ‘type’ and ‘state’
columns. Before, the members table held a value of
“5” to represent the primary key of CA in the
state table. Now you see the state column as ‘CA’.

This is because the query grabs the columns it
wants to display in the SELECT statement by using
the ‘table.column’ syntax, and the FROM clause
helps us finish mapping the tables from which to
pull. Lastly, we know how to get exactly the right
associations by matching criteria in the WHERE
clause. This is where we map the numerically
keyed columns from members ‘state’ and type’
fields to to the state and level tables’ primary keys.

Database Intermediate :: Normalization : 2NF / JOIN

level members

Database Advanced :: Normalization : 2NF to 3NF

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

Now that we’ve discussed joins, let’s touch on data integrity. You
can see from the previous join example that if any of the keyed
data associations were entered incorrectly into the database,
your ability to effectively find the data would start to
disintegrate. This is the danger of not using transactional
InnoDB tables in 3NF form. Nothing is preventing the site
administrator from making a data entry mistake that might
damage the keyed associations.

level members

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

For instance, if by accident a primary key “id” value was changed
in the “level” table from 4 to 44, then all of the associations in
the “members.type” column whose values are “4” would be
broken. All data integrity checks in 2NF must be performed by
the the administrator when making manual data changes, and
they must be programmed by the site programmer.

Moving to 3NF transactional tables can be fussier but can
alleviate these types of problems.

Database Advanced :: Normalization : 2NF to 3NF

level members

Database Advanced :: Normalization : 3NF / Foreign Keys

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

In the Third Normal Form, we make specific associations with
foreign key constraints. A foreign key is a “parent” column to
child column in a different table. In the example above, “state.id”
is the foreign key parent to its child, “members.state”. Similarly,
“level.id” is the parent foreign key to its child “members.type”.
This means that you cannot enter a value in “members.state”,
for instance, that does not exist in any “state.id” records. The
attempt to modify the table would fail and throw an error in
order to protect the data integrity!

level members

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

The flip side of the previous scenario is if you go to update the
parent, the change will cascade down to all of its children so
that you don’t have to find every instance of the children to
change them! If the change is to delete the parent, the effect it
has on the children depends on how the foreign key was set up
to handle deletion of the parent. When creating foreign keys,
you can specify whether or not you want the deletion to
cascade to child records, leave the original values, or set the
children to NULL.

Database Advanced :: Normalization : 3NF / Foreign Keys

level members

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

Foreign keys only work in transactional tables. A “transaction”
means that when one change happens, a second must also
occur as a consistency check. MySQL uses MyISAM tables by
default (which are NOT transactional and do not support
foreign keys), but you can set MySQL up to use InnoDB type
tables if you want foreign key support. It is best to design a
database with these goals in mind and use the right tables from
the beginning. Because foreign keys are advanced, we will not
extensively cover them in this class.

Database Advanced :: Normalization : 3NF / Foreign Keys

level members

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

Adhering to the third normal form, while theoretically
desirable, is not always practical. In theory, normalization is
worth pursuing; however, many small tables may degrade
performance or exceed open file and memory capacities. It may
be more feasible to apply third normal form only to data that
changes frequently. You can achieve 3NF without true foreign
key indexes and InnoDB tables by writing an application that
requires the user to verify all related fields when any one is
changed.

Database Advanced :: Normalization : 3NF / Foreign Keys

level members

username l_name f_name address1 address2 city state zip email type

goatboy doe john 22 Tree St. Apt. B Chula Vista 5 91913 gboy@hotmail.
com 1

darth stewart ron 9 Cate Pl. null San Diego 5 92182 bigfan@gmail.c
om

2

smokey doe jane 557 1st St. Unit 245 La Mesa 5 91941 bandit@yahoo.
com

4

state

id type donation

1 platimum 300

2 gold 200

3 silver 100

4 student 25

id state long_form

1 AL alabama

2 AK alaska

3 AZ arizona

4 AR arkansas

5 CA california

50 WY wyoming

Depending on how large the database is and how many tables it
requires, building “physical” constraints with foreign key indexes
can slow down database performance. Creating actual foreign
keys indexes in MySQL means that MySQL polices the queries.

You can still design the tables with conceptual foreign key
indexes, but you would use your PHP application to enforce
foreign keys based on how queries are written instead of relying
on MySQL to enforce the rules.

Database Advanced :: Normalization : 3NF / Foreign Keys

