
POSIX File Permissions Primer
Advanced Web Development ….Instructor: Leigh Cotnoir

	
 1	

This is a little primer on POSIX file permissions. POSIX stands for “Portable Operating
System Interface for UniX.”

POSIX permissions (perms) are set in “octal notation”. Octal notation consists of a
three- or four-digit “base-8” value, where “base-8” is a number system (0-7). For a
general point of reference on what that means, we are accustomed to counting in a
“base-10” system (0-9), and computers are accustomed to counting in the most
elemental number system, “base-2” or binary (0-1).

In base-8, we use a 3-digital octal notation to represent a different component of the
permission set:

1. User class (also referred to a “owner” class),
2. Group class,
3. “Others” class (also referred to as “everyone” or “world”).

Each of these digits is the sum of its component bits (see also Binary numeral system).
As a result, specific bits add to the sum as it is represented by a numeral:

 * The read bit adds 4 to its total (in binary 100),
 * The write bit adds 2 to its total (in binary 010), and
 * The execute bit adds 1 to its total (in binary 001).

OKAY, WHAT DOES THAT MEAN!?

Let’s use a visual:

Value Symbolic Representation Bit Equivalent Permission
0 - - - 0 + 0 + 0 = 0 bits No permission
1 - - x 0 + 0 + 1 = 1 bit Execute
2 - w - 0 + 2 + 0 = 2 bits Write
3 - w x 0 + 2 + 1 = 3 bits Write + execute
4 r - - 4 + 0 + 0 = 4 bits Read
5 r - x 4 + 0 + 1 = 5 bits Read + execute
6 r w - 4 + 2 + 0 = 6 bits Write + read
7 r w x 4 + 2 + 1 = 7 bits Read+ write + execute

If you look at the first two columns in the table above, you can compare the “symbolic
representation” presence/absence of r,w,x to the binary numeric representations of each
value below.

Value Binary Numeric Representation Bit Equivalent Permission
0 0 0 0 0 + 0 + 0 = 0 bits No permission
1 0 0 1 0 + 0 + 1 = 1 bit Execute
2 0 1 0 0 + 2 + 0 = 2 bits Write
3 0 1 1 0 + 2 + 1 = 3 bits Write + execute
4 1 0 0 4 + 0 + 0 = 4 bits Read
5 1 0 1 4 + 0 + 1 = 5 bits Read + execute
6 1 1 0 4 + 2 + 0 = 6 bits Write + read
7 1 1 1 4 + 2 + 1 = 7 bits Read+ write + execute

POSIX File Permissions Primer
Advanced Web Development ….Instructor: Leigh Cotnoir

	
 2	

Each class (user, group, other) needs a specific permission designation so that the
operating system will know how to treat the target file or directory. Let’s look at some
examples of permissions on directories below:

Filezilla view: 755 Filezilla view: 755 explained Filezilla view: 766

Standard permissions for
web directories

Notice how the bits add up
to create each number in
the total octal permissions
value of 755.

If we change permissions to
766, we remove the ability
allow for directory contents
modification while disabling
the execute bit. In web
directories, this means that
Apache can’t display image
files from this directory in a
browser. But it also restricts
execution of other
potentially harmful scripts.

Changing an uploads folder’s permissions to 766 is useful if you need enable the ability
for users to simply upload materials to a server without having to display the content. It is
a safer method than 777 because it prevents malware from propagating up the directory
tree via script execution in the uploads folder.

If you want people to be able to upload image files, however, that are to be viewed in the
site’s web pages, you need to change the folder permissions to 777. If you open the
permissions up to 777, it is important to write restrictions into your upload script to try
and keep as many potentially harmful files out as possible. If you are only using the
folder for web images, you should restrict the MIME types to web-safe files (gifs, jpgs,
pngs).
Some other application files permissions views:
Cyberduck view : change from 766 to 777

POSIX File Permissions Primer
Advanced Web Development ….Instructor: Leigh Cotnoir

	
 3	

Applying changes “recursively” means that you make all subdirectories take the same
permissions.

On a Mac, OS X 10.5 using “Get Info” from the directory properties:

In the “Sharing and Permissions” above, we see that the

• User is “mleighcotnoir”

POSIX File Permissions Primer
Advanced Web Development ….Instructor: Leigh Cotnoir

	
 4	

• Group is “staff”
• Others (is always “everyone”)

Note, however, that on a Mac, it does not tell us anything about the execute bit using
“Get Info.” It only shows us simple permission properties. You have to use a special
program or go into the command line to get more detail on the permissions if changing
the execute bit.

Above the command line properties of the same directory called “exercise7” as in the
Mac example above. Below are the details of how to read these details.

You will notice in the above example that the execute bit is enabled, even though the
Mac “Get Info” panel doesn’t give us this information. To get this information in the
command line, you must use the Terminal application in the /Applications/Utilities/ folder.
To get the information on a folder, go to its parent directory and issue a list command
with a “switch” to show the “long” view. If we assume that you wanted to get the info on
the main web-serving folder on a Mac computer, located at
“/Library/WebServer/Documents/” then you would type the following into the command
line:

cd /Library/WebServer/
ls –l

This would return the permissions for all directories in the WebServer folder, including
the “Documents” folder, which is where the main default web-serving folder is for Macs.

SPECIAL NOTE: If you review the fopen() function, please note that the r,w,x letters
behave slightly differently as parameter commands for the fopen() function!

